Advanced Impeller Technology for Superior Performance
Advanced Designs

Chemineer impeller designs are the result of over six decades of research and applied application experience, resulting in the broadest range of durable and efficient impeller options. Proprietary technologies are applied to thoroughly analyze all process parameters, ensuring proper impeller selection for optimal performance in every application. Carbon steel, 316/316L stainless, high alloys and coatings are available for all impellers.

**RL-3 Ragless™ Impeller**
- Engineered to prevent fibrous material build up by eliminating edges and protrusions that would allow fibrous material to agglomerate
- High axial flow impeller for superior mixing performance in blending and solids suspension applications
- Strong central hub and sturdy blades designed to handle the loads related to material and flow impingement to ensure reliable operation and long service life

**XE-3 Impeller**
- Chemineer's most efficient axial flow impeller for heat transfer, blending and solids suspension applications
- Mechanical design reduces weight allowing longer shafts without the need for additional support
- Can replace less efficient impellers and reduce energy costs

**HE-3 Impeller**
- An established industry standard for axial flow impellers
- Extremely efficient: creates greater fluid motion with less energy
- Ideal for blending, heat transfer and solids suspension

**Maxflo W**
- Excellent performance in abrasive solids suspension, liquid-solid-gas and boiling or near-boiling applications
- 10% more pumping than the Maxflo T means retrofits with no decrease in performance
- High-solidity blade design translates into improved mass transfer over other high efficiency designs

**SC-3 Impeller**
- Engineered for deep tank applications utilizing rolled blade design
- Produces flow of larger impellers without added weight or loss of efficiency
- Longer shafts possible with lighter weight designs

**Maxflo WSE**
- Advanced side-entering hydrofoil design with high efficiency for maximum pumping action
- More cavitation resistant than other designs through effective hydrodynamic design
- Reduced wear through lower tip speeds

**Gas Dispersion Impellers**

**BT-6**
- Parabolic blade design engineered for maximum performance
- Highest gas dispersing capability at nearly six times the D-6 (Rushton) turbine
- Lower power drop in the gassed state improves mass transfer
- Relatively insensitive to viscosity

**Other Designs**
- CD-6: Curved blade design similar to the BT-6, the CD-6 has gas dispersing capability over two times that of the D-6
- D-6 (Rushton): A cost-effective design for low gas rates or concentrations of immiscible liquids
Time-Proven Technology

**P-4 Impeller**
- Axial flow design suitable for wide changes in process viscosity
- Efficient for immiscible blending applications where shear and pumping is required
- Excellent for solids incorporation from the liquid surface

**JP-3 Impeller**
- Marine style energy efficient design
- Ideal for small batches
- Handles higher viscosities than hydrofoil designs

**Anchor Impeller**
- Most economical laminar flow impeller available
- Horizontal flow well suited for low-liquid-level geometries
- Solve heat transfer fouling problems with optional wall scrapers

**S-4 Impeller**
- Close clearance design for operation near the tank bottom
- Excellent for low-liquid-level solids suspension applications
- Designed for use in laminar regime (Reynolds number < 50) applications

**ChemShear Impeller**
- Customize levels of shear to suit your process
- Proper fluid turnover minimizes the need for auxiliary pumping impellers
- Small particles possible: 2 microns achieved in processes such as micro-encapsulation
- Traditional dispersion blades – such as the BT-6, CD-6, and D-6 – can also be used in high shear applications

High-Viscosity Impellers

**Double Helical Ribbon Impeller**
- Proven the best high viscosity, laminar flow impeller
- Highly effective in heat transfer
- Efficiently incorporates surface liquids and solids
- For viscosities over 30,000 MPa

**Anchor Impeller**
- Most economical laminar flow impeller available
- Horizontal flow well suited for low-liquid-level geometries
- Solve heat transfer fouling problems with optional wall scrapers

**Screw (Auger) Impeller**
- Ideal for shear sensitive, uniform blending applications (polymers)
- Excellent top-to-bottom turnover flow characteristics
- Use in mildly pseudoplastic applications with power law indexes as low as 0.5

High Cleanability: Smoothline® Impeller

- Innovative patented design
- Liquid-shedding surfaces and concealed hardware for enhanced CIP performance
- FDA/USP CL VI materials
- Removable components allow ease of installation through small openings
- Axial or radial flow, single or multiple impellers
# Impeller Selection Guide

<table>
<thead>
<tr>
<th>Application</th>
<th>Solids Suspension</th>
<th>Three Phase Process</th>
<th>Immiscible Fluids</th>
<th>High Viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Impeller Type</strong> (s)</td>
<td><strong>Description</strong></td>
<td><strong>ChemScale</strong>®</td>
<td><strong>Gas Dispersion (BT-6, Maxflo W)</strong></td>
<td><strong>Helix, Anchor, Screw</strong></td>
</tr>
<tr>
<td>Mild/minimum blending and motion. Produces a flat, but moving fluid surface.</td>
<td>Intermediate/moderate blending of miscible liquids when specific gravity differences are less than 0.6. Produces surface rippling at water-like viscosities.</td>
<td>Moderate to vigorous agitation for uniform blending of miscible liquids when specific gravity differences are less than 0.6. Produces surface rippling at lower viscosities.</td>
<td>Very vigorous agitation for uniform blending of miscible liquids when specific gravity differences are less than 1.0. Produces violent surface motion at lower viscosities.</td>
<td></td>
</tr>
<tr>
<td>Solids Suspension</td>
<td>Intensity Definition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blending</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChemScale®</td>
<td>Solids are allowed to settle on the vessel bottom, but remain in motion.</td>
<td>None of the solids remain on the vessel base for a significant length of time.</td>
<td>Homogenous distribution of solids throughout the liquid volume.</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>Mild/minimum blending and motion. Produces a flat, but moving fluid surface.</td>
<td>Complete Suspension</td>
<td>Uniform Suspension</td>
<td></td>
</tr>
<tr>
<td>3-5</td>
<td>Intermediate/moderate blending of miscible liquids when specific gravity differences are less than 0.6. Produces surface rippling at lower viscosities.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-8</td>
<td>Moderate to vigorous agitation for uniform blending of miscible liquids when specific gravity differences are less than 0.6. Produces surface rippling at lower viscosities.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-10</td>
<td>Very vigorous agitation for uniform blending of miscible liquids when specific gravity differences are less than 1.0. Produces violent surface motion at lower viscosities.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>